
1 - 14 Gauss elimination
Solve the linear system given explicitly or by its augmented matrix.

1.  4 x - 6 y = -11
-3 x + 8 y = 10

ClearAll["Global`*⋆"]

Solve[4 x -− 6 y ⩵ -−11 && -−3 x + 8 y ⩵ 10]

x → -−2, y →
1

2


The green cell above agrees with the text answer.

3.  x + y - z = 9, 8 y + 6 z = -6, -2 x + 4 y - 6 z = 40

ClearAll["Global`*⋆"]

Solve[x + y -− z ⩵ 9 && 8 y + 6 z ⩵ -−6 && -−2 x + 4 y -− 6 z ⩵ 40]

{{x → 1, y → 3, z → -−5}}

The green cell above agrees with the text answer.

5.
13 12 -−6
-−4 7 -−73
11 -−13 157

{{65., 60., -−30.}, {-−20., 35., -−365.}, {55., -−65., 785.}}

ClearAll["Global`*⋆"]

Solve[
13 x + 12 y + -−6 z ⩵ 0 && -−4 x + 7 y -− 73 z ⩵ 0 && 11 x -− 13 y + 157 z ⩵ 0, {x, y}]

{{x → -−6 z, y → 7 z}}

A =
13 12 -−6
-−4 7 -−73
11 -−13 157

{{13, 12, -−6}, {-−4, 7, -−73}, {11, -−13, 157}}

RowReduce[A]

{{1, 0, 6}, {0, 1, -−7}, {0, 0, 0}}

Above: It is seen from inspection that x = 6 and y = -−7, the same values found in the text.



7.
2 4 1 0
-−1 1 -−2 0
4 0 6 0

{{14., 28., 7., 0.}, {-−7., 7., -−14., 0.}, {28., 0., 42., 0.}}

ClearAll["Global`*⋆"]

A =
2 4 1 0
-−1 1 -−2 0
4 0 6 0

{{2, 4, 1, 0}, {-−1, 1, -−2, 0}, {4, 0, 6, 0}}

e1 = RowReduce[A] /∕/∕ MatrixForm

1 0 3
2

0

0 1 -− 1
2

0

0 0 0 0

Solvex +
3

2
z ⩵ 0 && y -−

1

2
z ⩵ 0, {x, z}

{{x → -−3 y, z → 2 y}}

Above: The text sets y = t, but this is not necessary.  Either one is arbitrary in value. To 
accord with text, x = -−3 t, z = 2 t.

9.  0 -−2 -−2 -−8
3 4 -−5 13



{{0., -−18., -−18., -−72.}, {27., 36., -−45., 117.}}

ClearAll["Global`*⋆"]

Solve[-−2 y -− 2 z ⩵ -−8 && 3 x + 4 y -− 5 z ⩵ 13, {x, y}]

{{x → -−1 + 3 z, y → 4 -− z}}

Above: The answer agrees with text, provided a parameter t is invented such that z = t.

11.
0 5 5 -−10 0
2 -−3 -−3 6 2
4 1 1 -−2 4

{{0., 55., 55., -−110., 0.},
{22., -−33., -−33., 66., 22.}, {44., 11., 11., -−22., 44.}}

Clear["Global`*⋆"]
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A =
0 5 5 -−10 0
2 -−3 -−3 6 2
4 1 1 -−2 4

{{0, 5, 5, -−10, 0}, {2, -−3, -−3, 6, 2}, {4, 1, 1, -−2, 4}}

Below: The row reduction comes up with a null row. Is that an ominous sign?
e1 = RowReduce[A]

{{1, 0, 0, 0, 1}, {0, 1, 1, -−2, 0}, {0, 0, 0, 0, 0}}

The dot product has fewer equation seeds than there are rows in the A matrix. I play 
around with the assigned positions and signs of t1 and t2 to try to come up with the text 
answer.
e2 = e1.{x, y, z, t2, -−t1}

{-−t1 + x, -−2 t2 + y + z, 0}

Solve[-−t1 + x ⩵ 0 && -−2 t2 + y + z ⩵ 0, {x, y}]

{{x → t1, y → 2 t2 -− z}}

Let me trot out the text answer: x = t1 arb.; y = 2 t2 - t1; z = t2 arb. Rearranging the text 
answer results in the equation y = 2z - x. If I adopt the stance that z = t2, then I can make 
the same equation out of the results above, that is, y = 2z - x. 

13.

0 10 4 -−2 -−4
-−3 -−17 1 2 2
1 1 1 0 6
8 -−34 16 -−10 4

{{0., 130., 52., -−26., -−52.}, {-−39., -−221., 13., 26., 26.},
{13., 13., 13., 0., 78.}, {104., -−442., 208., -−130., 52.}}

ClearAll["Global`*⋆"]

e1 =

0 10 4 -−2 -−4
-−3 -−17 1 2 2
1 1 1 0 6
8 -−34 16 -−10 4

{{0, 10, 4, -−2, -−4}, {-−3, -−17, 1, 2, 2},
{1, 1, 1, 0, 6}, {8, -−34, 16, -−10, 4}}

e2 = RowReduce[e1]

{{1, 0, 0, 0, 4}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 2}, {0, 0, 0, 1, 6}}

e3 = e2.{w, x, y, z, t1}

{4 t1 + w, x, 2 t1 + y, 6 t1 + z}
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e4 = Solve[4 t1 + w ⩵ 0 && 2 t1 + y ⩵ 0 && 6 t1 + z ⩵ 0 && x ⩵ 0]

{{w → -−4 t1, x → 0, y → -−2 t1, z → -−6 t1}}

e5 = e4 /∕. t1 → -−1

{{w → 4, x → 0, y → 2, z → 6}}

Above: The answer matches the text.

17 - 21 Models of networks
In problems 17 - 19, using Kirchhoff’s laws (see example 2) and showing details, find the 
currents:

17. As shown in diagram below.

1 Ω

2 Ω2 Ω

4 Ω

32 V

RC-−circuit

16 V
I1

I2

I3
Q P

Considering only node P, and trying to put the Wikipedia information into effect, I have the 
equation I3 -− I2 -− I1 = 0 (Kirchhoff’s current law, which is strictly relative to P, not a clock) 
plus the two equations -(1) *⋆ I3 -− 2 *⋆ I1 -− 16-− 2 I1 = 0 and I3 + 32+ 4 I2 = 0 (Kirchhoff’s volt-
age law, in which each loop is considered with clockwise considered as positive).

In[81]:= Clear["Global`*⋆"]

Solve[iI3 -− iI2 -− iI1 == 0 &&
-−(1) *⋆ iI3 -− 2 *⋆ iI1 -− 16 -− 2 iI1 == 0 && iI3 + 32 + 4 iI2 == 0, {iI1, iI2, iI3}]

{{iI1 → -−2, iI2 → -−6, iI3 → -−8}}

The above green cell matches the text answer, the signs of current being uniformly opposite 
to the text answer merely informing me that all assumptions about current direction should 
be reversed. I can also get a solution to the steady state current online, at https://falstad.com/-
circuit/. The online version is live, and by double-clicking the three branches, the correct 
current for each branch is revealed. Thus I have two separate ways, other than state space, 
to track down the steady state current. 
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i1 c1 i2

P

Not this exact problem, but I could look at the Mathematica documentation example for a 
two-loop circuit. The sketch is shown above.

Component relations are entered, and state conditions are recorded.

In[82]:= components = L i2′[t] ⩵ vl[t], vc1′[t] ⩵
i1[t]

C1
, vc2′[t] ⩵

i2[t]

C2
; kirchhoff =

{R (i1[t] + i2[t]) ⩵ vr[t], vc1[t] + vr[t] ⩵ vs[t], vc1[t] ⩵ vl[t] + vc2[t]};

Then the state space model is created.
In[83]:= m1 = StateSpaceModel[Join[components, kirchhoff],

{ vc1[t], vc2[t], i2[t], i1[t], vr[t], vl[t]}, vs[t], vc2[t], t]

Out[83]=

0 0 -−L 0 0 0 0 0 0 0 0 -−1 0

-−1 0 0 0 0 0 0 0 0 -−
1

C1
0 0 0

0 -−1 0 0 0 0 0 0 -−
1

C2
0 0 0 0

0 0 0 0 0 0 0 0 R R -−1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 -−1
0 0 0 0 0 0 1 -−1 0 0 0 -−1 0

0 1 0 0 0 0 0

𝒮
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At this point specific values for the components can be set or reset.
In[84]:= mw = m1 /∕. {C1 → 2, C2 → 3, L → 1, R → 2}

Out[84]=

0 0 -−1 0 0 0 0 0 0 0 0 -−1 0

-−1 0 0 0 0 0 0 0 0 -−
1

2
0 0 0

0 -−1 0 0 0 0 0 0 -−
1

3
0 0 0 0

0 0 0 0 0 0 0 0 2 2 -−1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 -−1
0 0 0 0 0 0 1 -−1 0 0 0 -−1 0

0 1 0 0 0 0 0

𝒮

And finally the voltage is plugged in and the time-varying behavior is observed. I don’t like 
the output response to this model, I would like to see multiple traces for the multiple loops 
(of the circuit). 

In[130]:= opc = OutputResponse[{mw}, 12, {t, 0, 60}]

Out[130]= InterpolatingFunction Domain: {{0., 60.}}
Output: scalar

[t]

From the plot below, I seem to be seeing a gradual stabilization to the 12 volts entered as 
the ‘e’ value. However, I would expect to be seeing current, not potential. 

In[133]:= Plot[opc, {t, 0, 60}, ImageSize → 250, GridLines → Automatic]

Out[133]=

If state responses are considered, I see that there is a different one for each second. These 
are sinusoidal, but I don’t know why the 5th is nearly flat, but the 4th and 6th are pretty 
curvy.

In[86]:= ops = StateResponse[{mw}, 12, {t, 0, 6}];
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In[123]:=

p1 = Plot[ops[[1]], {t, 0, 5},
PlotStyle → Red, PlotRange → {{0, 5}, {-−5, 10}}];

p2 = Plot[ops[[2]], {t, 0, 5}, PlotStyle → Blue];
p3 = Plot[ops[[3]], {t, 0, 5}, PlotStyle → Green];
p4 = Plot[ops[[4]], {t, 0, 5}, PlotStyle → Orange];
p5 = Plot[ops[[5]], {t, 0, 5}, PlotStyle → Pink];
p6 = Plot[ops[[6]], {t, 0, 5}, PlotStyle → Black];

In[129]:= Show[p1, p2, p3, p4, p5, p6]

Out[129]=

1 2 3 4 5
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